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In the paper, the classic contour dynamics method for the study of inviscid two-
dimensional flow in an infinite domain is extended to systems with a circular bound-
ary. A suitable use of the image-charge technique allows one to express the velocity
on the contour of each vortex in terms of line integrals on the contours. Results are
presented in the framework of the dynamics of non-neutral plasmas in a Penning trap
(the problem is isomorphic to the classic fluid-dynamics problem for a Euler fluid),
showing the high accuracy attainable with the method. c© 2002 Elsevier Science (USA)

Key Words: contour dynamics; cylindrical boundary; image-charge technique; non-
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1. INTRODUCTION

Contour dynamics (CD) is a technique originally introduced by Deem and Zabusky
[1] and by Zabusky et al. [2] to study two-dimensional unbounded flows for inviscid,
incompressible fluids, in an infinite domain. The starting point for the CD method is the
two-dimensional Euler equations



∂�z(r, θ, t)

∂t
+ v(r, θ, t) · ∂�z(r, θ, t)

∂r
= 0

v(r, θ, t) = êz × ∂ψ(r, θ, t)

∂r
∇2ψ(r, θ, t) = �z(r, θ, t)

(1)

written in terms of the z-component of the vorticity field, �z(� = ∇ × v, being v the
velocity field), and the stream function, ψ . According to the method, the domain is divided
into regions (vortices) in which the vorticity field is constant. The CD algorithm evaluates
directly the velocity field along each vortex contour, without calculating the stream function;
in this way, the time evolution of the contours can be calculated.
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An improved CD algorithm, called “countour Surgery,” was developed by Dritschel [3],
who proposed a more refined method for the contour discretization. By taking into account
small-scale effects, a better description of the contours is obtained, thus making possible the
study of complex contour configurations. Van Buskirk et al. [4] also developed a different
CD algorithm for unbounded flows, which makes use of a spectral representation of each
vortex contour.

In all the works just cited, the velocity field is expressed as a sum of suitable line integrals
along the contour of each vortex. The CD method does not use any spatial computational
grid, thus avoiding the typical inaccuracies of the space discretization and allowing high
spatial resolution in the solution. This important result can be achieved because the Green’s
function of the Poisson equation for an unbounded system, G(r′ → r), satisfies the property

∂G

∂r′ = −∂G

∂r
, (2)

which is no longer valid for bounded systems.
The present work deals with the generalization of the CD method to physical systems

having a circular boundary. The motivation for this study was initially given by its ap-
plications to non-neutral plasmas confined by a Penning trap. In fact, the charge density
ρ(r, θ, t) confined in the central region of a Penning trap evolves in time according to the
mathematical model [5] 



∂ρ

∂t
+ v(r, θ, t) · ∂ρ(r, θ, t)

∂r
= 0

v(r, θ, t) = 1

B0
êz × ∂φ(r, θ, t)

∂r

∇2φ(r, θ, t) = − 1

ε0
ρ(r, θ, t)

φ(r = R) = 0

ρ(r, θ, 0) = ρ0(r, θ),

(3)

where ρ is the charge density field, φ is the electrostatic potential, R is the radius of the
trap, B0 is the external magnetic field, and ε0 is the vacuum dielectric constant.

The model (3), comprising the continuity equation, in which the velocity field is given
by the E × B drift, and the Poisson equation, is clearly isomorphic to the model (1) used
in fluid dynamics. Although the present work focuses on non-neutral plasmas applications,
such isomorphism provides an immediate extension of the results to fluid-dynamics studies
with the same geometry.

A widely used technique for solving Eqs. (3) is the particle-in-cell (PIC) method, which
uses a set of finite-size computational particles to describe the plasma distribution and
a spatial computational grid for the numerical solution of the Poisson equation. The CD
methods take into account only piecewise-constant density profiles and, if a very high
precision in the solution is required, they are in general rather time consuming compared
to the PIC method; however, the absence of a spatial discretization allows a very high
resolution in the simulation. Thus, contour dynamics cannot be regarded as an alternative
to the PIC method, but it can lead to extremely precise solutions, which can be considered
as reference results. For instance, contour dynamics can be successfully used in accurate
nonlinear studies of instabilities for hollow density profiles [6].
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To solve Eqs. (3) within the framework of CD, a new algorithm has to be developed, as the
Green’s function for the Poisson equation does not satisfy property (2). A way of extending
the CD technique to study non-neutral plasmas in a Penning trap has been proposed by
Backhaus et al. [7, 8], who employed an expression for the electrostatic potential φ of

φ = φp + φ0, (4)

where φp is evaluated using the Green’s function for unbounded systems, while φ0 is the
solution of the Laplace equation, ∇2φ0 = 0, with boundary conditions

φ0(R, θ) = −φp(R, θ). (5)

The potential φ0 is expressed in terms of a Fourier expansion with respect to θ , as

φ0(r, θ) =
+∞∑

l=−∞

(
r

R

)|l|
Dle

−ilθ , (6)

where the coefficients Dl , to be determined so as to satisfy condition (5), are written
in terms of suitable contour integrals; for the calculations, the sum is truncated at some
maximum value of l. Once the electrostatic potential φ is obtained, the velocity field is
readily calculated.

In the following, an alternative method based on the image-charge technique is proposed.
In this way, a fully analytic expression for the velocity field is obtained, without the need to
calculate the electrostatic potential. The method is presented in detail for plasmas or ideal
fluids evolving in the interior domain defined by a cylindrical boundary. However, with
minor adjustments, the technique also can be used for studying the dynamics of external
flows.

2. ANALYTIC DETERMINATION OF THE VELOCITY FIELD

In the point-vortex theory [5], the cylindrical boundary conditions can be taken into
account by associating each vortex of charge +q and coordinates (r, θ ) with an image
vortex of charge −q and coordinates (R2/r, θ ): By doing so, the calculations can be carried
out as for an infinite domain. This approach is still employable when dealing with vortices
of finite extension: If the charge density ρ(r, θ) is assigned within the cylindrical domain,
each elementary charge ρ(r, θ) r dr dθ induces a corresponding image elementary charge
of

ρ̂(r ′, θ ′) r ′dr ′dθ ′ = −ρ(r, θ) r dr dθ, (7)

where

r ′ = R2

r
, θ ′ = θ. (8)

Referring to vortices of constant charge density, in which

ρ(r) =
{

ρ0, r ∈ D

0, r �∈ D
(9)
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(D is the region of the domain occupied by the plasma) and using Eq. (8), one obtains

ρ̂(r′) =
{−ρ0

(
R
r ′
)4

, r′ ∈ D̂

0, r′ /∈ D̂,
(10)

where D̂ is the image region associated with D.
The electrostatic potential can be written as the sum of two terms,

φ(r) =
∫

D
G(r′ → r)ρ0 dr′ +

∫
D̂

G(r′ → r)ρ̂(r′) dr′ = φ1(r) + φ2(r), (11)

the first is related to the real charge distribution (region D) and the second to the image
(region D̂), with G(r′ → r) being the Green’s function of the 2D Poisson equation in an
infinite domain:

G(r′ → r) = − 1

2πε0
log(|r′ − r|). (12)

To evaluate the gradient of Eq. (11), one can observe that the first term,

∂φ1

∂r
= ρ0

∫
D

∂

∂r
G(r′ → r) dr′ = −ρ0

∫
D

∂

∂r′ G(r′ → r) dr′, (13)

can be rewritten as a contour integral using the divergence theorem, according to the classic
CD approach, as

∂φ1

∂r
=
(

−ρ0

∮
∂ D

G(r′ → r)n′
x dl ′

)
êx +

(
−ρ0

∮
∂ D

G(r′ → r)n′
y dl ′

)
êy. (14)

The gradient of the second term of Eq. (11) cannot be manipulated in the same way: In fact,
the image density field ρ̂(r′) is not constant in the region D̂ and therefore G(r′ → r)ρ̂(r′)
does not satisfy property (2). However, this term can be reduced analytically to a contour
integral, thus extending the standard CD approach to cylindrically bounded systems. In fact,
the expression for ∂φ2/∂r can be rearranged as follows:

∂φ2

∂r
= −

∫
D̂

∂

∂r′ [G(r′ → r)ρ̂(r′)] dr′ +
∫

D̂
G(r′ → r)

∂

∂r′ [ρ̂(r′)] dr′ = ∂φ I
2

∂r
+ ∂φII

2

∂r
. (15)

The term ∂φ I
2/∂r can be readily rearranged to obtain the more convenient expression

∂φ I
2

∂r
= −

(∮
∂ D̂

G(r′ → r)ρ̂(r′)n′
x dl ′

)
êx −

(∮
∂ D̂

G(r′ → r)ρ̂(r′)n′
y dl ′

)
êy (16)

while the second term needs a different approach: Observing that

∂[ρ̂(r′)]
∂r′ =




4ρ0
R4

r ′5 êr ′ , r′ ∈ D̂

0, r′ /∈ D̂

(17)
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one can rewrite the components of ∂φII
2 /∂r can as

∂φII
2

∂r
· êr =

∫
D̂

G(r′ → r)
dρ̂

dr ′ êr · êr ′ dr′ (18a)

∂φII
2

∂r
· êθ =

∫
D̂

G(r′ → r)
dρ̂

dr ′ êθ · êr ′ dr′, (18b)

where

êr · êr ′ = cos(θ ′ − θ), êθ · êr ′ = sin(θ ′ − θ),
dρ̂

dr ′ = 4ρ0
R4

r ′5 . (19)

The integrals appearing in Eqs. (18a) and (18b) can be written as contour integrals by
introducing a new function, ψ(r, r′), which satisfies the condition

G(r′ → r)
dρ̂

dr ′ = 1

r ′
∂

∂r ′ (r
′ψ(r, r′)), (20)

in order to write

∂φII
2

∂r
· êr =

∮
∂ D̂

ψ(r, r′) cos(θ ′ − θ)n′
r dl ′ (21a)

∂φII
2

∂r
· êθ =

∮
∂ D̂

ψ(r, r′) sin(θ ′ − θ)n′
r dl ′. (21b)

By solving Eq. (20), the analytic expression of ψ(r, r′) is obtained as

r ′ψ(r, r′) = −
∫ +∞

r ′
r ′G(r′ → r)

dρ̂

dr ′ dr ′

= −α

∫ +∞

r ′

log[r ′2 + r2 − 2rr ′ cos(θ ′ − θ)]

r ′4 dr ′, (22)

where α = −ρ0 R4/πε0. After calculating the integral (22), r ′ψ(r, r′) can be expressed as

r ′ψ(r, r′) = H(r, r′) + α

3
[K (r ′) + Q(r, r′)W (r, θ, θ ′)] − παW (r, θ, θ ′)

6r | sin(θ ′ − θ)| , (23)

where

H(r, r′) =
(

− α

3r ′3 − αC

6

)
log[r ′2 + r2 − 2rr ′ cos(θ ′ − θ)] (24)

Q(r, r′) = 1

r sin(θ ′ − θ)
arctan

[
r ′ − r cos(θ ′ − θ)

r sin(θ ′ − θ)

]
(25)

W (r, θ, θ ′) = (D − Cr cos(θ ′ − θ)), K (r ′) = C log r ′ − B

r ′ − A

2r ′2 (26)

A = −2

r
cos(θ ′ − θ), B = 2 + 2Ar cos(θ ′ − θ)

r2
(27)

C = 2Br cos(θ ′ − θ) − A

r2
, D = 2Cr cos(θ ′ − θ) − B.
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As Eq. (22) shows, r ′ψ(r, r′) tends to zero for r ′ → +∞ and, consequently, the image
contribution to the velocity field vanishes when the image distribution approaches infinity.

Once ψ(r, r′) is determined, ∂φ/∂r can be expressed as a sum of contour integrals as

∂φ

∂r
= ∂φ1

∂r
+ ∂φ I

2

∂r
+ ∂φII

2

∂r
, (28)

and the velocity field is readily evaluated from the second of Eqs. (3).
If the contours are described by means of a finite set of points {rp}, p = 1, . . . N , the

analytic expression for the velocity field deduced here can be formally written as

v(r) = f(r, {rp}). (29)

Thus, the evolution of the contours is governed by the following system of differential
equations:




dr1

dt
= f(r1, {rp})

dr2

dt
= f(r2, {rp})

...

drN

dt
= f(rN , {rp}).

(30)

An alternative (and more general) technique consists of describing the contours by means
of analytic curves, whose shape depends on a set of Nc coefficients {Cα}. (For example, in
some situations a vortex can be approximated as an ellipse; in this case, five coefficients
are needed.) Now the velocity field can be formally written as

v(r) = g(r, {Cα}). (31)

Moreover, a mathematical procedure (e.g., a least-square technique) must be defined to
calculate the coefficients {Cα} of the analytic curves that best fit a generic set of {rp}
contour points. In general, this procedure can be written as

Cα = hα({rp}). (32)

Following this second approach, the evolution of the contours is governed by a set of
differential equations for the coefficients {Cα}:

dCα

dt
=

N∑
p=1

∂hα

∂rp
· vp =

N∑
p=1

∂hα

∂rp
· g(rp, {Cβ}), α = 1, . . . Nc. (33)

In the present paper the first approach has been followed (essentially for its simplicity).
However, the second technique, which could also allow help develop semianalytic studies
(e.g., by generalizing the method proposed by Fine [9]), is in principle more general and
further investigations should focus on it.
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3. CONTOUR DESCRIPTION AND NUMERICAL EVALUATION

OF CONTOUR INTEGRALS

By using formulas (8), one can verify that the image of a line segment AB within the trap
is the arc A′ B ′, shown in Fig. 1, of a circle passing through the center of the trap with radius
Rc = R2/2d , where d is the distance of the segment from the center of the trap. The length
of the arc is

�la = 2Rc|θ1 − θ2|, (34)

where θ1, θ2 are the azimuthal coordinates of the end points of the segment. Thus, by
adopting a polygonal description of the contours of the real vortices, the image contours
are determined exactly.

To evaluate the contour integrals (14), (21a), and (21b), a numerical approach is required.
In the present work, the following discretization scheme, for a generic function Z (r, r′),
has been adopted:

∮
∂ D

Z(r, r′) dl ′ �
Nl∑

j=1

Z(r, r̄′
j )�l j (35a)

∮
∂ D̂

Z(r, r′) dl ′ �
Nl∑

j=1

Z(r, r̄′
aj )�la j . (35b)

Here r̄′
j , �l j , r̄′

aj , and �la j are the medium points and the lengths of the segments of the
real contour and of the arcs of the image contour, respectively.

When a segment approaches the center of the trap, the length of its corresponding image
arc increases and this numerical scheme may appear to be inconvenient. Actually, recalling
formulas (8) and (10), one can show that, for the contour integrals (14), (21a), and (21b),
Z(r, r̄′

aj )�la j behaves asymptotically as 1/r̄ ′3
aj when r̄ ′

aj → ∞, providing a negligible con-
tribution to the integral: Thus, a bad estimation does not lead to a significant error.

By using formulas (35a) and (35b), the velocity of each node on the contours is readily
calculated and the position of the nodes is updated using a second-order Runge–Kutta

FIG. 1. Segment of the real contour and corresponding image arc.
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method, in which the value of each time step, �t , is determined consistently with the
contour discretization, by imposing that the maximum displacement |vmax|�t be smaller
than the minimum length of the segments.

To maintain good precision in the polygonal description of the contour, a redistribution
routine is required. In fact, if the shape of a vortex grows in complexity during a simulation,
a good description of its contour can be achieved only by increasing the number of nodes
N. On the other hand, N should be maintained as low as possible to obtain good efficiency
of the algorithm, as the computational time is proportional to N 2. Therefore, some nodes
must be eliminated when they are so close to one another that the error introduced by their
elimination is negligible.

The redistribution routine operates at each time step: It controls both the length of each
side of every polygon and the curvature in each node, in order to identify where the contours
have to be refined. By doing so, the contour is modified only where necessary and hence
nonphysical contour perturbations, generally caused by the redistribution, are drastically
reduced.

The length �L of each side of the polygon is compared with a predefined minimum
length �Lmin: If �L < �Lmin, the end points are eliminated and a new point is inserted in
the middle of the old segment. A second control is carried out by comparing the length �L
of each side with a maximum length �Lmax(k), defined as a function of the local curvature
k: If �L > �Lmax(k), a new node is inserted in the middle of the segment. Thus, to increase
the local linear density of nodes in high curvature regions, �Lmax(k) must be a decreasing
function of the curvature k. With reference to Dritschel’s work [3], the expression

�Lmax(k) = b + c

k p
(36)

has been used, with a suitable choice of coefficients b, c, and p. The spatial resolution of
the CD code and, consequently, the precision reached in the contour description depend
only on the choice of �Lmin and �Lmax(k), whose optimal values are in general different
when referred to distinct vortices: For this reason, the routine is self-adaptive with respect
to the characteristic dimension of each vortex. More details on this issue are presented in
the Appendix.

4. RESULTS AND CONCLUSIONS

To prove the effectiveness of the proposed method, numerous simulations have been
carried out. In the following, results are presented for two different “classic” phenomena:
(a) the instability for hollow density profiles and (b) the interaction between vortices. The
results show the very precise contour description provided by the CD algorithm even when
the shape of the vortices reaches a high level of complexity. The precision of the results has
been checked by changing the number of nodes and/or decreasing the time step; in some
cases, they have been compared with PIC simulations. For this reason, they can be regarded
as reference results for the physical problem considered.

In the following, dimensionless units are used, in which R = 1, B0 = 1, and ε0 = 1.
Figures 2 and 3 report some frames of the evolution of a perturbed plasma ring,

ρ(r, θ) =
{

1000, r1(θ) < r < r2(θ)

0, otherwise,
(37)
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FIG. 2. Evolution of a plasma ring perturbed according to Eqs. (37) and (38) with m = 2: (a) initial distribution,
(b) distribution at t = 3.893 × 10−2, (c) distribution at t = 5.188 × 10−2, and (d) distribution at t = 6.010 × 10−2.
The level of accuracy is obtained by setting Nref = 128.
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FIG. 2—Continued

where

r1(θ) = 0.4[1 + 0.05 cos(mθ)], r2(θ) = 0.6[1 + 0.05 cos(mθ)] (38)

for m = 2 (Fig. 2) and m = 3 (Fig. 3). The results presented are in excellent agreement with
the analytic results obtained from a linear analysis of stability [5].
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FIG. 3. Evolution of a plasma ring perturbed according to Eqs. (37) and (38) with m = 3 (Nref = 128):
(a) initial distribution, (b) distribution at t = 2.913 × 10−2, (c) distribution at t = 3.832 × 10−2, and (d) distri-
bution at t = 5.114 × 10−2.

Figures 4–8 show the evolution of two-ring patterns of vortices of finite size, which extend
the point-vortex studies published in Refs. [10, 11]. A six-vortex configuration has been
considered: The inner and the outer rings have radii R1 = 0.35 and R2 = 0.5, respectively,
with ρ1 = 2917 and ρ2 = 1000 (the radius of each vortex is r = 0.1). This pattern would be
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FIG. 3—Continued

an equilibrium configuration in the framework of the point-vortex theory [10]. In con-
trast, when circular vortices of relevant dimensions are taken into account, the shape of
the outer vortices keeps changing in time and very long, thin filaments are generated
(Fig. (4)).
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FIG. 4. Evolution of a two-ring pattern of vortices with radius r = 0.1 (Nref = 128): (a) initial configuration,
(b) distribution at t = 2.512 × 10−2, (c) distribution at t = 4.522 × 10−2, and (d) distribution at t = 5.667 × 10−2.

A different case has been studied in the second simulation by setting R1 = 0.32, R2 = 0.55
and taking into account circular vortices of radius 0.2 and the same densities. In addition
to the CD technique, the simulation has been carried out also using a PIC code [6] with
a very fine mesh for the polar grid (�r = R/450, �θ = 2π/512) and 6 × 105 particles.
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FIG. 4—Continued

Four frames of the evolution obtained with the CD technique are reported in Fig. 5. In
Figs. 6–8 the CD results are compared both with the ones provided by the PIC code and
with the results of the CD code set for lower precision (see the Appendix). Figure 9 shows
the growth of the total number of nodes, N, for the two CD simulations. All the results
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FIG. 5. Evolution of a two-ring pattern of vortices with radius r = 0.2 (Nref = 128): (a) initial configuration,
(b) distribution at tb = 0.479 × 10−2, (c) distribution at tc = 1.004 × 10−2, and (d) distribution at td = 1.462 × 10−2.

clearly show the excellent agreement between the two different techniques and the high
level of precision of the CD method.

The CD code set for lower resolution required nearly one-half the time TPIC taken by
the PIC code, while the more accurate CD technique required a total computational time
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FIG. 5—Continued

of nearly 4TPIC. A rigorous comparison between the computational cost of the PIC method
and that of the CD method is difficult to make, as one should define a common criterion
of accuracy for completely different techniques, and this goes beyond the purposes of the
present work.
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FIG. 6. Comparison between the two distributions obtained with (a) CD (Nref = 128) and (b) PIC at time
t = 1.402 × 10−2.

As far as the CD method developed by Backhaus et al. [7, 8] is concerned, one can
observe that its precision depends both on the number N of points of the contour and on
the number L of boundary points in which the field φp is evaluated. At each time step,
the computational costs to evaluate φp, the coefficients {Dl}, and φ0 are proportional to



IMAGE-CHARGE METHOD FOR CONTOUR DYNAMICS 409

FIG. 7. A detail of the central part of the charge density distribution at time t = 1.402 × 10−2, obtained with
(a) the CD code (Nref = 128), (b) the PIC code, and (c) the CD code set for lower resolution (Nref = 64).
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FIG. 7—Continued

FIG. 8. A detail of the region marked by a dotted line in Fig. 6, obtained with (a) the CD code (Nref = 128),
(b) the PIC code, and (c) the CD code set for lower resolution (Nref = 64).
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FIG. 8—Continued

N (N + L), Llog2L , and N L , respectively. From these considerations, one can guess that,
for standard precision, the two CD methods are nearly equally time consuming. In contrast,
when high precision is required, L must be increased much more with respect to N (in
fact, �θ = 2π/L is constant, while the contour must be refined only in some regions of the
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FIG. 9. Evolution of the total number of nodes (N ), of the number of added nodes (Na), and of the number
of removed nodes (Nr), setting (a) Nref = 128 and (b) Nref = 64.

vortices; thus, a contour described by a relatively small number of nodes could require a
large number of boundary nodes): In this case, the effectiveness of Backaus’s method is
reduced.

The extremely high precision obtained with the CD method presented here depends
mainly on the analytic expression for the velocity field. Moreover, a proper treatment of
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the contours by means of an optimized redistribution routine is required. Future work will
focus on the study of more efficient methods for evaluating the contour integrals to reduce
the number of nodes and, consequently, the computational effort.

The code based on the CD algorithm has also been used for other studies on nonneutral
plasmas; Although results are not reported here, they are worth mentioning. For instance,
the code has been adapted to study the interaction between vortices of finite size and point
vortices, as it is very effective in describing the merging processes which are typical of such
configurations [12]. In particular, results of the CD code have been compared with those
obtained with a generalization of the analytic analysis proposed by Coppa et al. [13].

A more ambitious application of the code is the simulation of a non-neutral plasma in
the framework of recently developed kinetic models [14, 15]. According to these models,
electrons of different energy E “feel” a different z-averaged electric field (depending on the
different penetration depth of the particles in the end-electrode regions) and, consequently,
the E × B drift law must be modified as

v(r, θ, E) = α(E)

B0
êz × ∂φ(r, θ)

∂r
, (39)

where α(E) is a suitable function of the energy, to be determined self-consistently [16].
Therefore, a plasma distribution which is represented as a single vortex within the standard
model must be considered as a superposition of vortices of different energy, each evolving
according to Eq. (39). Work is in progress on this issue.

APPENDIX: CONTROL OF THE ACCURACY

As shown in Section 3, good accuracy in the contour description, for the whole simulation,
requires a proper choice of the bounds on line segment lengths. This means that, for each
vortex, the function �Lmax (k) and the value of �Lmin have to be chosen, depending on the
initial shape of the vortex. The algorithm presented here provides an automatic setting of
all the redistribution parameters.

First, for each vortex, a characteristic length, Req, is evaluated as

Req =
(

A

π

) 1
2

, (40)

where A is the area of the vortex Then, one can define a reference curvature value, kref =
1/Req and a reference segment length,

�L ref = 2π Req

Nref
, (41)

where Nref is the number of nodes one should use to describe a circle with the required
spatial resolution. In dimensionless units, formula (36) for �Lmax (k̂) can now be rewritten
as

�L̂max(k̂) = b̂ + ĉ

k̂ p
, (42)
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where

�L̂max(k̂) = �Lmax(k̂)

�L ref
, k̂ = k

kref
. (43)

Once Nref is fixed, contours of vortices having the same area are described with the same
spatial resolution, as �L ref and �Lmax (k) depend only on Req. The initial number of nodes
N on each contour is determined by setting the mean segment length, �L , equal to �L ref;
this leads to

N =∼
P

2π Req
Nref, (44)

where P is the perimeter of the vortex. In this way, the accuracy of the method depends
only on Nref.

After several tests on the redistribution routine, the following values for the parameters
in formula (42) have been chosen:

b̂ = 0.15, p = 0.7, ĉ = 1.6. (45)

Furthermore, to prevent the linear density of nodes from increasing without control in
regions of high curvature, a lower bound for �L̂max(k̂) has been introduced; on the other
hand, to mantain good accuracy where the curvature is low, an upper bound is also necessary.
Eventually, the expression

�L̂max(k̂) =




2, k̂ < k̂1

b̂ + ĉ

k̂ p
, k̂1 ≤ k̂ < 3

b̂ + ĉ

3p
, k̂ ≥ 3

(46)

is adopted, with

k̂1 =
[

ĉ

(2 − b̂)

] 1
p

. (47)

The minimum acceptable segment length �L̂min is set as a fraction of the lower bound of
�L̂max (k̂), with the constraint

�L̂min <
1

2

(
b̂ + ĉ

3p

)
; (48)

in this way, the insertion of a node does not generate segments that are too short.
In the present implementation of the method, �Lmin and all the parameters appearing

in �Lmax (k) are defined for each vortex once at the beginning of the simulation and re-
main constant in time. As a future development, one may try to improve the accuracy of
the contour description during the simulation when necessary, by changing dynamically
Nref. In this case a more efficient contour description (for instance using cubic interpola-
tion between nodes, as in Ref. [3]) would be recommended to reduce the computational
effort.
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FIG. 10. (a) Evolution of the total charge for the case of Fig. 5, with different values of Nref. (b) Maximum
percentage deviation of the total charge from its initial value, with the considered set of Nref.

To show the importance of the parameter Nref on the precision achieved with this CD
technique, the evolution of the same pattern of vortices (Figs. 4–8) has been calculated for
five different values of Nref (Fig. 10). For each case, the total charge of the distribution
(which according to the theory should be constant) has been calculated, at different times
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during the simulation, as

Q =
Nv∑

i=1

ρi

∫ ∫
Di

dx dy =
Nv∑

i=1

ρi

∮
∂ Di

xnx dl �
Nv∑

i=1

ρi

(
(Nl )i∑
j=1

x̄ j nx j�l j

)
, (49)

where Nv is the number of vortices, ρi is the charge density of the i th vortex, x̄ j is the
x coordinate of the medium point of the j th segment, and nx j is the x-component of the
normal unit vector.

The deviation of Q from its initial value can be regarded as a relative measure of the
accuracy attained in the simulation. Figures 10a and 10b report the evolution in time of the
relative deviation of the total charge δQ and the maximum relative deviation, δQmax/Q0,
for each value of Nref, respectively.

Clearly, the parameter Nref affects the computational cost required by this CD algorithm:
In fact, it can be shown that the mean computational cost per time step is proportional to
N 2

ref, while the number of time steps is proportional to Nref: This makes the total simulation
time proportional to N 3

ref.
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